Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments

نویسنده

  • Xin Gao
چکیده

MOTIVATION The parametric F-test has been widely used in the analysis of factorial microarray experiments to assess treatment effects. However, the normality assumption is often untenable for microarray experiments with small replications. Therefore, permutation-based methods are called for help to assess the statistical significance. The distribution of the F-statistics across all the genes on the array can be regarded as a mixture distribution with a proportion of statistics generated from the null distribution of no differential gene expression whereas the other proportion of statistics generated from the alternative distribution of genes differentially expressed. This results in the fact that the permutation distribution of the F-statistics may not approximate well to the true null distribution of the F-statistics. Therefore, the construction of a proper null statistic to better approximate the null distribution of F-statistic is of great importance to the permutation-based multiple testing in microarray data analysis. RESULTS In this paper, we extend the ideas of constructing null statistics based on pairwise differences to neglect the treatment effects from the two-sample comparison problem to the multifactorial balanced or unbalanced microarray experiments. A null statistic based on a subpartition method is proposed and its distribution is employed to approximate the null distribution of the F-statistic. The proposed null statistic is able to accommodate unbalance in the design and is also corrected for the undue correlation between its numerator and denominator. In the simulation studies and real biological data analysis, the number of true positives and the false discovery rate (FDR) of the proposed null statistic are compared with those of the permutated version of the F-statistic. It has been shown that our proposed method has a better control of the FDRs and a higher power than the standard permutation method to detect differentially expressed genes because of the better approximated tail probabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data

Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...

متن کامل

Package 'multtest' Title Resampling-based Multiple Hypothesis Testing

Description Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (cen...

متن کامل

Test Statistics Null Distributions in Multiple Testing: Simulation Studies and Applications to Genomics

Multiple hypothesis testing problems arise frequently in biomedical and genomic research, for instance, when identifying differentially expressed and co-expressed genes in microarray experiments. We have developed generally applicable resamplingbased single-step and stepwise multiple testing procedures (MTP) for controlling a broad class of Type I error rates, defined as tail probabilities and ...

متن کامل

Comments on the analysis of unbalanced microarray data

MOTIVATION Permutation testing is very popular for analyzing microarray data to identify differentially expressed (DE) genes; estimating false discovery rates (FDRs) is a very popular way to address the inherent multiple testing problem. However, combining these approaches may be problematic when sample sizes are unequal. RESULTS With unbalanced data, permutation tests may not be suitable bec...

متن کامل

Package ‘ multtest ’

Description Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (cen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2006